
	 	 								 	

	

©Object	Matrix	Ltd	2021.	All	Rights	Reserved.		 Page	1	of	14	 	

		

Object	Matrix	

MatrixStore	
Administration	and	
Programming	Guidelines	
Version	1.9,	February	2021	

	 	

	 	 								 	

	

©Object	Matrix	Ltd	2021.	All	Rights	Reserved.		 Page	2	of	14	 	

		

Contents	
1	 About	this	guide	..	3	
2	 MatrixStore	Concepts	..	3	

2.1	 Cluster	..	3	
2.2	 Spaces	..	3	
2.3	 Vaults	...	3	
2.4	 Users	..	3	
2.4.1	 Service/API	Users	..	4	
2.5	 Access	Keys	..	4	
2.6	 Vault	file	credentials	deprecation	..	4	
2.7	 Communication	Protocols	..	5	

3	 MatrixStore	API	Programming	...	6	
3.1	 DropSpot	and	MXFS	Metadata	Compatibility	..	6	
3.2	 Additional	information	regarding	timestamp	attributes	...	10	
3.3	 Cross-platform	file	naming	compatibility	...	11	
3.3.1	 Windows	..	11	
3.3.2	 MacOS	/	OS	X	...	12	
3.3.3	 Unix	...	12	
3.4	 Searchable	keywords	in	DropSpot	...	12	

4	 System	Metadata	Attributes	..	14	
	

	 	

	 	 								 	

	

©Object	Matrix	Ltd	2021.	All	Rights	Reserved.		 Page	3	of	14	 	

		

1 About	this	guide	
Every	software	solution	has	been	designed	with	certain	best	usage	practices	in	mind	and	
MatrixStore	is	no	exception	to	that	rule.	This	guide	is	intended	to	provide	advanced	
information	on	how	to	get	the	most	out	of	a	MatrixStore	solution	both	from	an	
administration	point	of	view	and	from	a	programmer	(using	the	MatrixStore	API)	point	of	
view.	Furthermore,	the	guide	points	to	the	future	direction	of	MatrixStore	and	how	to	
program	/	use	MatrixStore	in	a	way	that	will	best	take	advantage	of	those	future	versions.	

2 MatrixStore	Concepts	

2.1 Cluster	
A	MatrixStore	cluster	consists	of	3	or	more	servers,	called	Nodes.	Each	Node	contains	disk	
storage	and	runs	the	MatrixStore	server	software,	which	transparently	maintains	the	
integrity	of	your	data.

2.2 Spaces	
Version	4.2	introduces	the	concept	of	Spaces.	Spaces	allow	for	multiple	tenancy	of	a	
single	cluster	by	partitioning	users/groups	and	vaults.	

Every	cluster	has	a	default	space,	which	does	not	have	a	name,	but	any	new	spaces	
require	their	own	unique	name.	This	space	name	is	required	during	authentication	
for	any	user/group	that	is	not	part	of	the	default	space.	

It	is	not	possible	for	users	and	vaults	across	different	spaces	to	interact	with	each	
other.	

2.3 Vaults	
A	vault	is	a	managed	and	scalable	object	storage	partition	within	the	cluster.	In	practice	this	
may	be	used	like	mounted	drive	or	network	share.	Users	and	groups	will	not	be	able	to	
access	vaults	unless	they	have	been	given	permission	to	do	so	by	a	vault	administrator.	

2.4 Users	
Users	in	MatrixStore	are	created	via	the	Web	Admin	GUI.	They	can	be	created	normally,	
existing	only	within	the	cluster,	or	they	can	be	imported	from	an	external	LDAP	directory.	

• MatrixStore	supports	any	number	of	users	

	 	 								 	

	

©Object	Matrix	Ltd	2021.	All	Rights	Reserved.		 Page	4	of	14	 	

		

• Each	User	gets	its	own	log	in	credentials,	and	can	be	set	with	its	own	read,	write,	
delete,	search	and	attribute	update	permissions	per	vault	

	
Users	normally	authenticate	using	a	username	and	password.	Users	can	also	be	
authenticated	via	access	keys,	normally	to	allow	software	to	perform	operations	on	their	
behalf	without	the	sharing	of	passwords.	
	
Users	authenticating	by	username	and	password	need	to	also	supply	their	space’s	name.	
Each	application	may	have	a	separate	mechanism	for	providing	the	space	name	but	if	one	is	
not	provided	them	it	is	assumed	they	are	using	the	default	space	(empty	string).	
Authentication	by	access	key	has	no	such	requirement.	

2.4.1 Service/API	Users	
A	service	user,	also	referred	to	as	an	API	user,	is	a	user	in	MatrixStore	who	only	has	
permissions	and	access	to	the	vaults	they	require	and	can	only	authenticate	via	access	keys.	
This	type	of	user	should	be	used	for	applications	where	there	is	no	user	interaction	such	as	a	
service.	They	are	effectively	the	same	as	a	standard	user,	however	their	ability	to	use	a	
username	and	password	is	disabled.	This	can	be	done	by	simply	not	providing	them	at	
creation,	or	by	disabling	sign-in	capability.		
	
It	is	recommended	that	you	keep	to	one	service	user	per	service	rather	than	many	services	
using	one	user.	

2.5 Access	Keys	
Access	Keys	provide	an	alternative	authentication	method,	which	is	more	secure	than	
username	and	password.	They	allow	access	to	a	single	user	account	without	the	need	for	
password	sharing.	Made	up	of	an	ID	and	secret,	the	ID	obfuscates	the	original	user	and	the	
long	secret	makes	them	virtually	impossible	to	brute	force.		
	
Access	Key	example	

id: 66bdfb8a-87b6-42b3-baf8-ddcc09a5abf7
secret: sU7kbyxFPQGFTXxDjVnSeBQ0iTBpa4YKmGDkMhmem7FfyAvM

	
Access	Keys	are	designed	for	use	by	services	and	applications	where	human	interaction	is	
not	required.	A	user	can	have	many	access	keys	and	they	can	be	revoked	at	any	time.	

2.6 Vault	file	credentials	deprecation	
Prior	to	MatrixStore	version	4.0	authentication	required	user	credentials	that	were	stored	in	
a	.vault	file.		
	
A	.vault	file	example	

cluster=a018e24b-7a9a-1565-e2df-9bd7d04e4dcd
user=acbea855-40cd-11e9-bad9-ef5d28a1bef7
password=sir bean channel nose heavy

	 	 								 	

	

©Object	Matrix	Ltd	2021.	All	Rights	Reserved.		 Page	5	of	14	 	

		

vault=ab64e4b0-40cd-11e9-bad9-ef5d58a9bef7
addresses=10.0.20.1, 10.0.20.2, 10.0.20.3
vaultName=Productions 2018
protocol=arpc

	
Starting	from	version	4.0	that	type	of	authentication	method	has	been	deprecated	and	
superseded	by	access	key	credentials.	Going	forward	your	software	should	either	use	
interactive	input	to	obtain	username	and	password	from	a	user,	or	allow	configuration	of	an	
access	key	if	it	is	a	service.	
	
At	present,	the	older	authentication	method	will	still	work	with	existing	credentials	and	
MatrixStore	version	4	remains	backwards	compatible	with	older	versions	of	the	API.	
However,	you	are	no	longer	be	able	create	new	.vault	file	credentials.	Legacy	vault	file	
credentials	are	migrated	during	the	upgrade	from	version	3.x	to	4	and	converted	into	access	
keys.	This	means	you	can	update	your	MatrixStore	cluster	and	continuing	using	your	
software	without	having	to	make	any	code	changes.	
	
Any	software	using	the	older	authentication	method	should	be	updated	as	soon	as	possible	
to	ensure	future	compatibility	with	the	API	and	to	capitalise	on	newer	features,	such	as	
access	to	multiple	vaults	under	a	single	access	key.	

2.7 Communication	Protocols	
When	building	a	MatrixStore	Connection	as	a	client	there	are	4	RPC	protocols	to	use:	

o rpc	–	synchronous	non-encrypted	connections	
o arpc	–	asynchronous	non-encrypted	connections	
o srpc	–	encrypted	transmission	of	packets	
o sarpc	–	encrypted	asynchronous	connections	

	
	
	
	
	
	
	

	 	

	 	 								 	

	

©Object	Matrix	Ltd	2021.	All	Rights	Reserved.		 Page	6	of	14	 	

		

3 MatrixStore	API	Programming	

3.1 DropSpot	and	MXFS	Metadata	Compatibility	
Objects	dropped	into	MatrixStore	are	not	required	to	contain	any	metadata	whatsoever,	but	
in	order	for	the	objects	to	be	viewed	within	DropSpot	and/or	MXFS	certain	metadata	items	
must	be	added	to	the	objects.	The	following	table	describes	the	attributes	that	are	shared	
between	MatrixStore	applications	and	can	be	shared	with	third-party	applications.	
	
M/Mandatory:	*=Mandatory,	RO=Read	Only	
T/Type:	S=String,	I=Integer,	B=Boolean,	L=Long	
S/Searchable:	*=Yes.	

	
	
	
	

Name	 M	 T	 S	 Notes	

MXFS_CREATION_TIME	 		 L	 *	

Epoch,	number	of	milliseconds	since	UTC	Jan	01	1970,	
indicating	when	file	has	been	created.	DropSpot	gets	that	
attribute	from	the	source	file	during	copying	it	to	the	cluster.	
MXFS	on	Mac	OSX	and	Linux	sets	that	value	to	a	current	
time	during	archive	operation.	MXFS	on	Windows	has	that	
value	explicitly	set	by	OS	to	original	timestamp	of	the	source	
file.	Application	should	not	change	that	value	later	on.	If	
application	modifies	this	attribute	it	should	also	modify	
MXFS_CREATIONYEAR,	MXFS_CREATIONMONTH	and	
MXFS_CREATIONDAY	to	appropriate	values	

MXFS_CREATIONYEAR	 		 I	 *	
Year	extracted	from	MXFS_CREATION_TIME	e.g.	2013.	It	
should	be	updated	whenever	application	modifies	
MXFS_CREATION_TIME	

MXFS_CREATIONMONTH	 		 I	 *	
Month	extracted	from	MXFS_CREATION_TIME.	Values	from	
1	(Jan)	to	12	(Dec).	It	should	be	updated	whenever	
application	modifies	MXFS_CREATION_TIME	

MXFS_CREATIONDAY	 		 I	 *	
Day	extracted	from	MXFS_CREATION_TIME.	Values	from	1	
to	31.	It	should	be	updated	whenever	application	modifies	
MXFS_CREATION_TIME	

	 	 								 	

	

©Object	Matrix	Ltd	2021.	All	Rights	Reserved.		 Page	7	of	14	 	

		

	

Name	 M	 T	 S	 Notes	

MXFS_ARCHIVE_TIME	 RO		 L	 *	

Generated	by	the	cluster	(v3.0+)	and	should	not	be	
changed.	Epoch,	number	of	milliseconds	since	UTC	Jan	01	
1970,	indicating	when	file	has	been	archived	to	the	
cluster.	Application	should	not	change	that	value	later	
on.	

MXFS_ARCHYEAR	 RO		 I	 *	

Generated	by	the	cluster	(v3.0+)	and	should	not	be	
changed.	Year	extracted	from	MXFS_ARCHIVE_TIME.	
Essential	for	compatibility	with	searching	by	date	in	
DropSpot.	E.g.,	2011	

MXFS_ARCHMONTH	 RO		 I	 *	

Generated	by	the	cluster	(v3.0+)	and	should	not	be	
changed.	Month	extracted	from	MXFS_ARCHIVE_TIME.	
Essential	for	compatibility	with	searching	by	date	in	
DropSpot.	From	1	(=Jan)	to	12	(=Dec).	

MXFS_ARCHDAY	 RO		 I	 *	

Generated	by	the	cluster	and	should	not	be	changed.	

Day	extracted	from	MXFS_ARCHIVE_TIME.	Essential	for	
compatibility	with	searching	by	date	in	DropSpot.	From	1	
to	31.	

MXFS_MODIFICATION_TIME	 		 L	 *	
Epoch,	number	of	milliseconds	since	UTC	Jan	01	1970,	
indicating	when	was	the	last	modification	of	the	content	
(not	metadata)	of	an	object.	

MXFS_ACCESS_TIME	 		 L	 *	
Epoch,	number	of	milliseconds	since	UTC	Jan	01	1970,	
indicating	when	was	the	last	time	content	(not	
metadata)	of	the	object	was	read	or	written	

DPSP_WEEK_OF_YEAR	 		 I	 *	 Not	used.	

MXFS_TIMESTAMP	 		 		 		
Deprecated.	Should	not	be	used.	Please	use	
MXFS_CREATION_TIME,	MXFS_MODIFICATION_TIME,	
MXFS_ACCESS_TIME	instead.	

DPSP_TIMESTAMP	 		 L	 *	 Deprecated.	See	MXFS_TIMESTAMP	

	 	 								 	

	

©Object	Matrix	Ltd	2021.	All	Rights	Reserved.		 Page	8	of	14	 	

		

	

	
	
	
	

Name	 M	 T	 S	 Notes	

MXFS_PARENTOID	 *	 S	 *	
The	MatrixStore	object	ID	for	the	parent	of	this	object.	If	
this	is	a	“top	level”	object	then	the	parent	OID	should	be	
set	to	be	an	empty	string.		

MXFS_FILENAME	 *	 S	 *	 Filename	of	the	object,	e.g.,	“movie.mpg”	

MXFS_FILEEXT	 		 S	 *	
Filename	extension	if	known.	E.g.,	“Doc”,	“XLS”	etc.	Aids	
searching	and	sorting	in	DropSpot.	

MXFS_FILENAME_UPPER	 *	 S	 *	 Uppercase	version	of	MXFS_FILENAME	

MXFS_INTRASH	 *	 B	 *	
This	value	must	be	set.	Unless	the	file	is	to	be	put	in	the	
trashcan	the	value	should	be	false.	

MXFS_CATEGORY	 *	 I	 *	

Helps	DropSpot	identify	the	kind	of	contents	the	object	
contains.	For	correct	behaviour,	it	should	always	be	set	to	
be	a	Folder	when	known.	Categories	are:	

Unknown			=	0;	
Folder				=	1;	
Movies				=	2;	Video,	AVI,	MPEG	
Music					=	3;	Audio,	MP3	
Documents	=	4;	MS	Office,	PDF,	Text		
Images				=	5;	Images,	JPG,	GIF…	
Vaults				=	6;	MatrixStore	Vaults	

MXFS_DESCRIPTION	 		 S	 *	
A	string	containing	the	published	attributes	pertaining	to	
the	object	being	stored.	Generally,	this	value	does	not	
need	to	be	set.	

MXFS_GENERATOR	 		 S	 *	
Set	a	code	representing	the	writing	application.	
E.g.“MXFS”	

MXFS_LINK_SRC	 		 S	 *	
Where	an	object	is	a	link	file	to	another	object,	this	should	
be	set	to	the	(real)	object’s	MatrixStore	ID.	

	 	 								 	

	

©Object	Matrix	Ltd	2021.	All	Rights	Reserved.		 Page	9	of	14	 	

		

	
	
	
	

Name	 M	 T	 S	 Notes	

MXFS_MIMETYPE	 		 S	 *	 String	mimetype	–	helps	DropSpot	“double	click	open”	files	
correctly.	Examples	are:	
"application/octet-stream"	(Default)	
"text/directory"	(Folders)	
"application/msword",		"application/pdf",	
"audio/mp3",		"application/x-wav",		
"audio",	"video",	"image",	"text"	

MXFS_OWNERGID	 		 I	 *	 Non	essential.	If	known	set	to	the	ID	of	the	group	the	file	
belongs	to.	

MXFS_PATH	 *		 S	 *	 The	absolute	path	of	the	original	object.	This	is	mandatory	
to	be	compatible	with	S3Connect	and	is	the	equivalent	of	
your	Amazon	S3	object	key.	

MXFS_SIZE	 RO	 L	 *	 Used	to	retrieve	the	size	of	the	object.	

DPSP_TIMEBASEDUID	 		 S	 *	 Important:	A	GUID	that	is	entered	into	the	metadata	when	
an	object	is	being	stored.	This	way,	if	communication	is	lost	
with	the	server	at	a	point	in	between	the	object	write	
stream	being	closed,	and	receiving	back	the	object	ID	for	the	
object	being	stored,	then	on	reconnection	with	the	server	
the	application	storing	the	object	can	search	for	the	object	
based	upon	the	timebased	uid	to	see	if	in	fact	the	object	did	
finish	writing.	This	can	avoid	duplicate	writing	of	objects.	

DPSP_DPSPUSEROID	 		 S	 *	 The	application	user	login	name.	

MXFS_USERNAME	 		 S	 *	 In	DropSpot	this	is	the	operating	system	login	username.	
Where	possible	the	original	file	user	name	should	be	
preserved.	

MXFS_COMPATIBLE	 		 I	 *	 Integer	denoting	version	number.	Optional	field	currently	
set	to	“1”	in	DropSpot.	

MXFS_ENCRYPTED	 		 B	 		 Not	used.	

	 	 								 	

	

©Object	Matrix	Ltd	2021.	All	Rights	Reserved.		 Page	10	of	14	 	

	

3.2 Additional	information	regarding	timestamp	attributes	
Since	MatrixStore	v3,	on	every	object	creation	cluster	generates	automatically	the	following	
attributes:	

• MXFS_CREATION_TIME,	MXFS_MODIFICATION_TIME,	MXFS_ACCESS_TIME,	
MXFS_ARCHIVE_TIME,		

• MXFS_CREATIONYEAR,	MXFS_CREATIONMONTH,	MXFS_CREATIONDAY	
• MXFS_ARCHYEAR,	MXFS_ARCHMONTH,	MXFS_ARCHDAY,		

	
Attribute	modification	

• MXFS_CREATION_TIME,	MXFS_MODIFICATION_TIME,	MXFS_ACCESS_TIME	can	be	
changed	by	application	and	should	be	taken	from	timestamps	of	a	source	file	if	
possible	(Dropspot).	MXFS	is	platform	specific	and	most	of	the	time	only	mtime	of	
the	source	file	(MXFS_MODIFICATION_TIME)	will	be	preserved	

• When	application	or	API	changes	MXFS_CREATION_TIME	it	should	also	provide	
additional	3	MXFS_CREATIONxxx	attributes	for	consistency	

• MXFS_MODIFICATION_TIME,	MXFS_ACCESS_TIME	can	be	modified	freely	but	only	if	
application	knows	the	details	about	source	file,	otherwise	changing	is	not	necessary	

• MXFS_ARCHIVE_TIME,	MXFS_ARCHYEAR,	MXFS_ARCHMONTH,	MXFS_ARCHDAY	are	
read	only.	Applications	should	not	try	to	update,	remove	them	etc.	In	that	scenario	
UNSUPPORTEDOPERATION	error	will	be	thrown.	Also	creating	object	with	any	of	
those	attributes	is	blocked.	API	and	applications	(Dropspot	etc)	should	comply.	
Those	attributes	will	not	be	changed	by	the	cluster.	

	 	

	 	 								 	

	

©Object	Matrix	Ltd	2021.	All	Rights	Reserved.		 Page	11	of	14	 	

	

3.3 Cross-platform	file	naming	compatibility	
MatrixStore	does	not	prevent	applications	from	specifying	any	character	as	part	of	a	
file	or	directory	name	since	it	is	an	object	store.	It	also	does	not	replace	any	
characters	since	this	may	break	the	compatibility	with	that	application	or	others.	

However,	as	MXFS	is	available	for	many	operating	systems,	use	of	special	characters	
should	be	avoided	in	file	and	directory	names,	to	ensure	best	cross-platform	
compatibility.	

Special	characters	include	file	path	separators,	punctuation	and	parentheses,	which	
are	reserved	characters	in	file	and	directory	names	on	some	operating	systems.	

For	best	cross-platform	compatibility,	the	use	of	the	following	characters	should	be	
avoided:	

• File	path	separators	e.g.	":"	(colon),	"/"	(forward-slash)	and	"\"	(back-slash),	
which	are	used	as	path	separators	on	some	platforms.	Consider	substituting	
these	with	"_"	(underscore)	or	"-"	(hyphen).	

• Punctuation,	parentheses,	quotation,	brackets	and	operators	e.g.	.	,	[]	{	}	()	
!	;	"	'	*	?	<	>	|	as	these	are	often	reserved	or	used	for	special	functions	when	
scripting	/	programming.	

• White	space	characters	e.g.	spaces,	tabs,	new	lines	and	embedded	returns.	
Although	supported	on	some	platforms,	scripts	and	applications	may	not	
handle	them	as	expected.	Consider	substituting	these	with	"_"	(underscore)	
or	"-"	(hyphen).	

In	addition,	below	are	some	platform	specific	requirements.	

3.3.1 Windows	

Windows	has	its	own	specific	naming	requirements	detailed	on	the	below	link	

https://msdn.microsoft.com/en-
gb/library/windows/desktop/aa365247(v=vs.85).aspx	

If	you	wish	for	files	and	directories	to	behave	as	expected	in	MXFS	on	Windows,	the	
following	should	be	considered:	

• The	filename	cannot	end	with	a	space.	

• The	filename	cannot	end	with	a	period.	

• Names	are	case-insensitive.	

• Avoid	reserved	characters	including	<	>	:	/	\	|	?	*	"	

• Avoid	reserved	names	(detailed	in	above	link).	

	 	 								 	

	

©Object	Matrix	Ltd	2021.	All	Rights	Reserved.		 Page	12	of	14	 	

	

In	addition,	MXFS	requires	that	filenames	should	be	less	than	128	characters	in	
length.	

3.3.2 MacOS	/	OS	X	

MacOS	/	OS	X	has	the	following	requirements	

• "/"	(forward-slash)	is	not	allowed	in	file	and	directory	names	(Finder	will	let	
you	but	will	write	a	":"	in	it's	place).	

• ":"	(colon)	although	allowed,	should	be	avoided	as	it's	display	will	vary	
depending	on	the	application	used,	e.g.	terminal	will	show	":",	but	Finder	will	
display	"/".	

3.3.3 Unix	
Unix	platforms	have	the	following	requirements:	

• "/"	(forward-slash)	and	the	NULL	("\0")	character	are	not	allowed	in	file	and	
directory	names.	

3.4 Searchable	keywords	in	DropSpot	
From	MatrixStore	v2.4,	all	stand-alone	keywords	that	are	required	to	be	searchable	from	
DropSpot	need	to	be	entered	with	the	keyword	preceded	by	the	string	“_fs_”,	therefore:	
key="_fs_"	+	word	you	want	to	search.	Keys	should	always	be	in	lower	case.	
value=""	
	
As	an	example:	Superman	movie.	
	
File:	
superman.mov	
	
Synopsis:	
A	strong	man	
	
If	you	want	DropSpot	and	MXFS	to	see	the	file,	add	the	mandatory	attributes	in	the	table	
and	any	others	that	are	known.	
	
-	If	you	want	DropSpot	to	find	the	file	searching	for	simple	string	
"superman",	add	he	attribute:	
key="_fs_superman";	value=""	
	
-	If	you	want	DropSpot	to	find	the	file	searching	for	simple	string	
"mov",	add	he	attribute:	
key="_fs_mov";	value=""	

	 	 								 	

	

©Object	Matrix	Ltd	2021.	All	Rights	Reserved.		 Page	13	of	14	 	

	

	
-	If	you	want	DropSpot	to	find	the	file	searching	for	simple	string	
"movie",	add	he	attribute:	
key="_fs_movie";	value=""	
	
-	If	you	want	DropSpot	to	find	the	file	searching	for	the	string	
"category=action",	add	he	attribute:	
key="category";	value="action"	
	
With	the	above	attributes,	if	you	search	for	"movie	superman"	in	DropSpot,	it	will	construct	
an	AND	term	searching	for	2	attributes:	
_fs_superman=""	and	_fs_movie="",	finding	the	file	as	well.	
	
As	a	minimum,	the	following	attributes	could	be	added	to	the	file	from	the	table:	
MXFS_PARENTOID=string("")	
MXFS_INTRASH=boolean(false)	
MXFS_FILENAME=string("superman.mov")	
MXFS_FILENAME_UPPER=string("SUPERMAN.MOV")	
MXFS_CATEGORY=int(0)	
MXFS_PATH=string("/superman.mov")	
	
	
However,	then	as	many	other	attributes	as	possible	should	be	added.	
	 	

	 	 								 	

	

©Object	Matrix	Ltd	2021.	All	Rights	Reserved.		 Page	14	of	14	 	

	

4 System	Metadata	Attributes	
MatrixStore	provides	access	to	system	attributes	in	READ	ONLY	mode	providing	information	
to	applications.	The	list	is	described	below:	
	
Name	 Notes	
__mxs__locked	 	 Returns	if	the	object	is	locked	
__mxs__inCompliantStore*	 Returns	if	the	vault	has	regulation	compliance	

switched	on	
__mxs__storesCurrentRetentionPeriod*	 Returns	the	period	of	time	an	object	will	be	

locked	from	deletion	/	updating	for.	
__mxs__clustersCurrentTime*	 Returns	the	current	time	in	the	cluster	
__mxs__creationTime	 Returns	the	creation	time	of	the	object.	

Returned	as	an	8	byte	long.	
__mxs__modifiedTime	 Returns	the	last	modified	time	of	the	object.	

Returned	as	an	8	byte	long.	
__mxs__length	 Returns	the	length	of	the	object.	Returned	as	an	

8	byte	long.	
__mxs__calc_adler32	 Calculates	the	adler32	and	returns	the	result.	

Returned	as	an	8	byte	long.	If	the	return	value	is	-
1	or	-2	then	the	value	is	being	calculated,	check	
back	again	for	the	calculated	value	a	few	seconds	
later.	

__mxs__calc_md5	 Calculates	the	MD5	of	the	object	and	returns	the	
result.	Returned	as	a	byte	array.	If	the	return	
value	is	an	empty	array	then	the	value	is	being	
calculated,	check	back	again	for	the	calculated	
value	a	few	seconds	later.	

__mxs__vaultquotabytes*	 Returns	the	maximum	capacity	allowed	of	the	
vault.	Returned	as	an	8	byte	long.	

__mxs__vaultspaceusedbytes*	 Returns	the	current	space	used	by	the	vault.	
Returned	as	an	8	byte	long.	

__mxs__userHasTag=*	 Returns	if	the	current	user	has	been	tagged	with	
the	given	key.	As	of	server	version	2.4:	“dropspot		
admin”	is	supported	as	a	tag.	

__mxs__userCapabilities*	 Returns	the	current	user’s	access	capabilities.	
Returns	a	string	composed	of	“R”	“W”	“D”	“S”	
and	“U”	as	appropriate.	

__mxs__online	 	 Since	v3.	It	returns	if	the	object	is	online,	e.g.	it	
has	not	been	stubbed	and	the	data	is	accessible.	

	
*	When	searching	on	an	attribute	to	return	one	of	these	values,	use	object	ID	“00000000-
0000-0000-0000-000000000001-1”	
	
To	retrieve	one	of	the	listed	values	perform	a	get	metadata	attribute	API	command	on	the	
appropriate	object	with	the	listed	key.	

