
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 1	
 of	
 40	
 	

	
 	

Object Matrix
MatrixStore Architecture
Version 1.3.3, Dec 2014, Jonathan Morgan

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 2	
 of	
 40	
 	

	
 	

Contents

1 	
 Overview 	
 ..	
 4	

2 	
 MatrixStore Software Overview 	
 ...	
 4	

3 	
 MatrixStore Hardware Overview 	
 ..	
 10	

4 	
 MatrixStore Concepts 	
 ..	
 13	

4.1	
 Overview	
 ..	
 13	

4.2	
 MatrixStore Data Services	
 ...	
 14	

4.3	
 Object Based Storage	
 ..	
 14	

4.4	
 Object Metadata	
 ..	
 16	

4.5	
 Vaults	
 ..	
 16	

4.5.1	
 Vault Provisioned Capacity	
 ..	
 17	

4.5.2	
 Object Longevity Guarantees	
 ..	
 18	

4.6	
 MatrixStore Regulation Compliance	
 ..	
 19	

4.7	
 Data Compression, Data de-duplication, Content Addressed Storage
(CAS)	
 20	

4.8	
 MatrixStore Services	
 ..	
 21	

4.9	
 Search	
 ..	
 21	

4.10	
 Object Encryption	
 ..	
 22	

4.11	
 Object Writing, Load Balancing	
 ...	
 22	

4.12	
 Performance	
 ...	
 24	

4.13	
 Object Reading	
 ..	
 24	

4.14	
 Object Identification	
 ..	
 24	

4.15	
 Quality of Service	
 ..	
 25	

4.16	
 Security Overview	
 ...	
 25	

4.17	
 Maintenance – Storage Space Configuration	
 ..	
 28	

4.18	
 Server Tasks	
 ..	
 28	

4.19	
 Node Re-attachment (Version 2.4 onwards)	
 ...	
 30	

4.20	
 Node Decommissioning (Version 2.4 onwards)	
 	
 30	

4.21	
 Single Instance Vaults (Version 2.4 onwards)	
 	
 30	

4.22	
 Removing MatrixStore Software	
 ...	
 31	

4.23	
 Data Mirroring	
 ..	
 31	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 3	
 of	
 40	
 	

	
 	

4.24	
 Regulation Compliance	
 ..	
 32	

4.25	
 Data Replication	
 ..	
 33	

4.26	
 Management API	
 ...	
 35	

4.27	
 MatrixStore API	
 ...	
 36	

4.28	
 Upgrading Software	
 ..	
 36	

4.29	
 Cluster Monitoring and SNMP	
 ...	
 36	

4.30	
 Updateable Objects (Version 2.4 onwards)	
 ...	
 37	

5 	
 10GigE or not 10GigE? 	
 ...	
 38	

5.1	
 Traditional Data Flow between Clients and Servers	
 	
 38	

5.2	
 MatrixStore RAIN (Redundant Array of Independent Nodes)
Architecture	
 ...	
 39	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 4	
 of	
 40	
 	

	
 	

1 Overview
MatrixStore is the collective name for Object Matrix’s software solution for disk
based Nearline storage and archiving. This document describes the thinking
and rational behind the product as well as the product itself. The document is
written on a technical level for those who care about the nuts and bolts of why
and how data is kept securely, forever, within MatrixStore.

It is the aim of this document:

• to explain key foundation “how-to” mantras for the solution
• to provide a deep understanding of the issues involved and why design

decisions were taken
• to encourage discussion via understand and peer review to lead to

design improvements and new functionality

2 MatrixStore Software Overview
MatrixStore software runs on a storage cluster made up of many “servers”
commonly called “nodes”. The software enables the storage cluster to act as a
single entity such that connecting clients see the cluster as a single storage
location.

MatrixStore is an object based storage solution. This means that each data
element stored is treated as an object:

• A data element is typically a file, but could also be a piece of information
such as a data record

• An object consists of the data itself, metadata to describe the data and
policy control data

The art of a good object based storage solution is to provide not just storage of
data but also services that aid the applications and clients connecting to the
object store as well as inherent data storage capabilities such as high
resilience to data loss or corruption and data storage policy controls. These are
discussed later in this document in greater detail.

 The software platform that makes up MatrixStore consists of:

Node Operating System:

A stripped down and optimised version of Ubuntu Server is used at the o/s
level. This has been selected for its high reliability and ability to support various
hardware configurations. XFS (file system) is used on each node within
Ubuntu. Again, this was selected for its extremely strong track record, as well
as its in-built resistance to fragmentation. MatrixStore Server software is largely
independent of the o/s and has previously been run on various o/s including
our own distribution of a highly secure Linux kernel.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 5	
 of	
 40	
 	

	
 	

MatrixStore Server:

MatrixStore Server auto-boots on each node running on top of the operating
system.
Primarily written in Java, it occasionally calls on a few C libraries and on a few
o/s scripts. Underlying fundamentals in the server layer are:

• Self-sufficient: each node is able to run without a dependency on
services from other nodes.

• Lightweight inter-node communication: by keeping communication
between nodes to a minimum the cluster is highly-scalable (by avoiding
inter-node traffic noise).

• Highly-reliable: nodes should be able to run for several years at a time
without requirement for reboot. This has been witnessed in real-world
usage.

Architecturally the server is split into two layers, a “system layer” and a
“services” layer. System layer is a minimal layer that is intended to be fairly
static, provide security protocols, and to gather hardware information. Services
layer handles all high-level cluster functionality, client connections, etc.

MatrixStore Clients:

Client connectivity to the cluster is always through one of two APIs:
• MatrixStore API: C or Java. This API allows connectivity for data

storage, retrieval, search etc operations. This API has been
programmed to by numerous 3rd companies.

• MatrixStore Management API: Java. This API allows higher level
operations such as user creation and statistic information gathering.
Historically this API has only been used by Object Matrix, however, in
the future it is anticipated opening up the API for 3rd party companies to
program to.

Clients can be on MacOS, Windows, Linux, some flavours of Solaris and UNIX.
Clients communicate with the server using user datagram protocol (UDP) over
TCP/IP.

The MatrixStore APIs guarantees security, cluster location discovery, retries
and much more besides.

Client Applications:

The following applications are provided by Object Matrix:

FTPConnect: Mac, Windows. This is an FTP server that runs on Windows or
MacOSX. It translates client FTP requests into MatrixStore API calls to
store/retrieve data in the cluster.

DropSpot: Mac, Windows, Linux. A client GUI application for performing data
archive / retrieval / search. DropSpot can also perform these functions via shell
commands. DropSpot is multithreaded and provides strong job control and
verification – it is typically used for data ingest, e.g., camera data on to the
storage.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 6	
 of	
 40	
 	

	
 	

Figure 1 - DropSpot main interface

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 7	
 of	
 40	
 	

	
 	

Figure 2 - DropSpot Metadata Form

MatrixStore Maintenance Tool: Mac, Windows. This application is
typically used by Object Matrix engineers to create clusters, inject upgrades
into nodes and to perform other low-level administration functions. One key
feature of the maintenance tool is that it can simultaneously upgrade the
software in an entire cluster rather than requiring nodes to be upgraded one by
one.

MatrixStore Administrator Tool: Mac, Windows. This application is
typically used by the administrator at the customer site to monitor a cluster and
to perform basic administration upon the cluster.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 8	
 of	
 40	
 	

	
 	

Figure 3 - Admin Info pane

MatrixStore shell: Mac. This is only available to Object Matrix support and
allows shell access to the MatrixStore cluster with a command layer. Shell
access allows the support engineer to perform low-level engineering tasks.

MXFS: Mac, Windows, Linux. This filesystem can be launched on a client
machine to provide file system type access to the cluster from that machine.
The client machine will see the cluster as a drive letter / Volume and can
subsequently share the drive to connecting clients. In the background MXFS
sends and receives data to/from the cluster using MatrixStore API calls.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 9	
 of	
 40	
 	

	
 	

Figure 4 - vault c27-v3 mounted with MXFS

MXFS Samba Server: Linux. Launches a Samba Server v3 which
reads/writes data to MatrixStore.

WatchSpot: Windows. WatchSpot is used to watch a folder on a filesystem
and to sync the data on that folder to MatrixStore, or to watch a vault on
MatrixStore and to archive data from that vault to the LTO service.

Figure 5 - WatchSpot main interface

InterConnect: Windows. InterConnect will watch an Avid Interplay server and
will archive user selected data from Avid Interplay to MatrixStore.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 10	
 of	
 40	
 	

	

Figure 6 - Interplay Access Folder pane

CatDV and FCServer Plugins: Plugins for 3rd party asset managers.

Move2 (move2SGL, move2Xen, move2ODA): These applications watch
MatrixStore Vaults and manage the movement of data between MatrixStore
and archive type storage devices. The applications can move data on demand
from a user or according to business rules (age etc). When data is moved to a
archive device, such as LTO, then a searchable stub is left in MatrixStore. The
user, on discovering an asset, e.g., via DropSpot, can then elect to restore the
asset within DropSpot. DropSpot will then call upon move2 to return the asset.

3rd Party Applications: There are many Object Matrix partners who have
integrated their products into MatixStore as a storage solution.

3 MatrixStore Hardware Overview
Hardware from any vendor that supports Linux can be used with MatrixStore,
although only hardware that Object Matrix has qualified is will be supported. A
cluster consists of nodes and switches:

Cluster Notes

Nodes Minimum 3 (see below)

1Gb or 10Gb switches Two for internal traffic

Hardware is grouped into nodes:

Node Notes

CPU Dual core 1.6GHz and higher

Storage Up to 2 volumes, tested up to 192TB per
node. On Enterprise nodes this is with
RAID6.

Gigabit NICs or 10
Gigabit NICs

Two for internal traffic and two for
external. External can be 1G copper RJ45
BaseT, 10G copper RJ45 BaseT or 10G SFP+
copper.

IPMI One port for IPMI node control (optional)

OS Ubuntu Linux (Server version)

RAID control Hardware based for performance and
reliability. Capacitor and flash backed RAM.

Memory 2GB or more (typical 8GB per node installed)

Typically Object Matrix supplies only enterprise quality components, such as
Hitachi Ultrastar HDDs.

Points to consider in the configuration are:

• When a data object is stored into the cluster it is always initially stored to 2
separate nodes in the cluster. Therefore, a cluster must have at least 2

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 11	
 of	
 40	
 	

	

nodes in operation to be able to store data. Object Matrix therefore insists
on a minimum of 3 nodes in a cluster to allow for data writes to continue in
the eventuality of a node being down.

• If a node goes down, data is regenerated from the good node (that is still
up) to a new node location. This ensures that within an allowable time
period data is always kept with two good instances.

• For failover there should be 2 external traffic and 2 internal traffic NICS.
• Storage volumes are typically set to be RAID6. With the data kept in two

locations (both RAID6), a minimum of 6 disks would need to irrecoverably
fail for data loss to occur, furthermore, that failure would have to occur
before data has a chance to regenerate.

• Nodes are typically configured with mirrored system drives. System drives
are used to hold the operating system, system logs and some data that is
shared between multiple nodes.

• RAM space of 1GB + 1GB per 20 million metadata entries (per node). The
MatrixStore uses a 8GB configuration.

• CPU speed: Recommended to use at least dual core 1.6GHz, preferably
higher.

• Cluster is designed for up to 80 nodes (15PB), however, there are no hard
and fast reason not to go above that number. Cluster is tested up to 40
nodes.

• Time for the cluster to self-heal is a calculation based upon the size of the
node that has gone down ÷ the number of nodes in the cluster ÷ internal
NIC speeds. Or: the smaller the size of each node and/or the more nodes
there are, the faster regeneration will be.

• The more nodes there are the greater the bandwidth of Ethernet
connections to external connections to the cluster. A “fast” cluster should
therefore have low amounts of storage per node, a “high density” cluster
should have high amounts of storage.

Networking

Client machines access the cluster via IP addresses. Nodes within the cluster
contact each other via the internal network.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 12	
 of	
 40	
 	

	

Figure: Typical node’s physical network configuration

External traffic Examples

API, ports 1907, 1908 Write and read operations

Management API, port 667 Vault creation, user
modifications

Secure Socket Layer (SSL), port
8443

Internal traffic Examples

Management API, ports 666, 667 Vault creation, user
modifications

API, ports 1907, 1908 Write and read operations

External maintenance traffic* Examples

SSH, port as allocated ssh should normally be
switched off.

* Generally these ports can be blocked on the external network

When configuring a MatrixStore it is essential to:

1. Assign an internal and external IP address to each node
2. Ensure that firewalls within the network do not block traffic on any of the

above external or internal ports*
3. Ensure that each node can see each other node via Ethernet

networking, both within the internal and the external networks

When configuring MatrixStore it is normal/strongly recommended to:

1. Configure one (or two for failover) network interface ports to be
dedicated to internal traffic

2. Configure one (or two for failover) network interface ports to be
dedicated to external traffic

3. Dedicate one (or two for failover) switches to internal traffic, and thus
isolate internal traffic from the rest of your organisation’s network

Switches will typically be unmanaged Ethernet. As standard, Object Matrix
implements failover on the switching using switches that support IEEE
802.3ad.

Data transmitted over the internal network is not encrypted. Therefore, internal
switches should be physically isolated and protected. Because the internal
switches sit behind the nodes, compatibility with switches in the rest of the
client’s network is not required.

Port connectivity to the cluster from a client can be checked through the menu
option Cluster -> Test Connection in the MatrixStore Administration Tool.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 13	
 of	
 40	
 	

	

4 MatrixStore Concepts

4.1 Overview

MatrixStore is an object based storage solution. Every object based storage
solution has strengths and weaknesses that are a result of underlying
architectural decisions and project aims. MatrixStore includes the following
high-level ambitions:

• Scalable solution to 100 Petabytes; not, scalable to Exabytes (e.g., Amazon
S3)

• 100’s of simultaneous users; not, millions

• Hybrid solution usage: fast object storage plus full speed filesystem access;
not limited to either access type. This requires exceptionally fast random
access to objects.

• Provide highest levels of data security and data protection

• Completely plug and play architecture

• Object storage via data + metadata + data storage policy control

• Full suite of data services including search, metadata handling, replication
options, self healing and full support for an eco-system of client applications

• Capable of mixing different hardware nodes, e.g., as a result of scaling the
cluster over a number of years

Why archive to disk?

Disk is a proven well-understood technology with good transfer speed and
excellent random access. File systems are also well established. However, in
terms of archive for large organisations the challenge comes when 1000s of
disks need to be managed as storage locations, including the challenges of
authenticating that data is maintained bitwise exact.

Normally on disk based solutions:

• Large scale disk solutions are difficult to manage, e.g., 100TB+ SAN
solutions

• Bad administration can very easily lead to malicious or accidental data loss
• Solutions become outdated and data needs to be transferred to the “next

generation” solution
• Downtime is caused by individual component failures
• Transferring data offsite, search, firewalling, etc., requires separate

software modules, each of which might result in data loss and downtime
when upgraded or broken. Over time, the systems become disjointed as
individual components become out of date.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 14	
 of	
 40	
 	

	

MatrixStore seeks to overcome each of those problems.

Disk based archiving is a proven way of keeping large amounts of data:

• Google use it as the basis for keeping their data
• EMC Centera clusters data on disk and applies rules to the data such that it

complies with many regulations
• Isilon clusters data on disk for a “SAN” type solution, placing a Samba type

interface in front of the storage

Etc. In fact, if cost/technology was not an issue, then mostly anyone would like
to keep their data online, available, with faster access and more easily
managed on disk rather than offline on tape/optical.

4.2 MatrixStore Data Services

MatrixStore software is server software that is installed onto each node in a
cluster. It runs 24/7 to monitor the cluster and to perform services such as data
organisation, search, self-healing, replication of data, to apply business rules to
data handling, to handle client connections for write and read and to generally
virtualise the hardware and disks within a cluster to appear as a single storage
location.

MatrixStore software is designed from the inside out to support the
requirements of Nearline storage and medium to long-term archive.

MatrixStore makes the cluster:

• secure / ‘firewalled’
• near zero maintenance, e.g., to scale/to manage large volumes of data
• provides guarantees about the delivery and storage of data to and from the

disk
• monitors the archive for hardware failure, taking automated actions where

required
• fast
• searchable
• scalable
• functional
• easy to roll-in/roll-out technologies into the pool of storage as time goes on

4.3 Object Based Storage

It wasn’t so long ago that just about all data was stored within a file system, but
as the scale of data storage has increased dramatically, so the rise of object
based storage has become an essential part of keeping digital assets.
Examples of object based storage include Amazon s3, Google, EMC Centera,
to name but a few systems. Object based storage has the following
fundamentals:

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 15	
 of	
 40	
 	

	

• Like files, objects contain data, but unlike files, objects are not organized in
a hierarchy. Every object exists at the same level in a flat address space
(sometimes called a storage pool).

• Objects can also represent records rather than data files.
• Both files and objects have metadata associated with the data they contain,

but objects are characterized by their extended metadata. Each object is
assigned a unique identifier that allows the server or the end user to retrieve
the object without needing to know the physical location of the data. This
approach is useful for automating and streamlining data storage in scalable
environments.

• Within MatrixStore, the user need never know the unique identifier, since
the metadata can be used to look up the object.

• Objects are self-describing: unlike in a file system where should metadata
servers blocks of data are individually meaningless, object based solutions
are highly resilient to data loss through their very atomicity.

On top of massive pools of objects virtual views can be built to view the data.
One view of a bunch of objects might be from an asset manager, another view
might be a file system view. However, in order to support file system views the
underlying object based storage solution must support expected file system
behaviours, such as response times.

Under the hoods, a MatrixStore cluster actually stores objects in numerous file
systems. Benefits of this are:

• Proven technology
• Low interdependency between objects
• Scalable over main nodes.

Negatives:

• Files have an overhead of 200 bytes; unfilled blocks may result in wasted
space; therefore MatrixStore is not suitable for efficiently (in terms of
overhead in disk used) storing millions of very small (sub 100 byte) objects.

MatrixStore is designed for the storage of millions of objects.

When data is stored into MatrixStore it is stored as an “Object”. An Object
instance consists of the original data in an unchanged format and an
associated metadata file containing user and system attributes for the object.

All data is stored into virtual constructs called “vaults”. A vault contains meta
attributes pertaining to the handling of objects within that vault, such as
whether those objects must comply to regulations (See “Enforcing the longevity
of data”) or whether data should be replicated, etc. In effect, that set of policies
can be considered to be attached to each object.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 16	
 of	
 40	
 	

	

4.4 Object Metadata

Object metadata is used by MatrixStore and by users for different purposes.
Users generally use metadata to identify objects, but may also use metadata to
hold attributes about the object.

The MatrixStore server uses metadata to perform system tasks, such as to
authenticate that a corruption hasn’t occurred within the data file.

Object metadata is primarily stored in two locations:

1. in “flat file” format along with the object itself
2. in a searchable database

The “flat files” are stable and are generally stored alongside the data files. The
contents of the flat file is a standard Java HashMap, wherein the keys are
ASCII-US text, and the data is the binary characters representing the value of
the attributes. Since each object stores its own metadata in its own file,
corruption in one will not affect another, however, the downsides are the
filesystem overhead of storing extra files as well as storage speeds if many
attribute updates are made to an object. It is not expected that rapidly changing
attributes (e.g., a counter) will be stored within MatrixStore objects.

Every node stores a database of all of the metadata upon that node. This
allows for distribution (as clusters grow) and low levels of interdependency
between nodes. Should the database become corrupt, it can be rebuilt from the
metadata files on the node.

Metadata can be attached with two types of identified to an object:

• System attributes are used internally and are not commonly returned to the
user.

• User attributes are those added by the user and/or 3rd party applications
(e.g., CatDV)

When stored, attributes can be tagged as searchable or non-searchable. Only
searchable attributes are added to the server database.

MatrixStore (v3.1) also extracts metadata (and can extrapolate additional
metadata) from the contents of objects.

4.5 Vaults

Any object stored in MatrixStore is in fact stored into a logical entity called a
vault. As many vaults as required can be created in a single cluster (Object
Matrix tests for up to 2000 vaults per cluster, but can test for higher numbers of
vaults should there be a requirement to do so). Vaults are intended to be used:

• One per project
• One per department
• One per data type
• One per customer

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 17	
 of	
 40	
 	

	

Vaults are not normally intended to be used per user, rather, per user group.

When a vault is created it can be given a set of properties dependent on the
data to be stored within it. Those attributes are:

• Provisioned Capacity (see section below)
• Object Policies

o Replication settings
o Group access settings
o Compliance settings (data retention period, retention policies)
o Audit settings

Via vaults, MatrixStore supports “Multiple Tenancy” and can provide limited
statistics for companies wishing to implement chargeback mechanisms for
vault throughput / storage space usage.

Vaults are created / modified via the Management API. This is called from the
MatrixStore Admin application.

Security between vaults is stringent (see Security section). Therefore:

• Using credentials from one vault user will never allow you to read/write/etc
to another vault

• The system administrator is not allowed to write / read / etc data within a
vault, but he does have permission to reset the vault administrator’s
account

• A vault administrator can (optionally) be allowed to write / read / etc data in
a vault, but he does have permission to create / reset vault users

4.5.1 Vault Provisioned Capacity

It is possible to set and update a boundary on the capacity that a vault can
consume within the cluster.

Should the provisioned capacity be exceeded the users of the vault will not be
able to perform any further write operations until such time as the provisioned
capacity is extended or the user deletes existing data in their vault thus freeing
up capacity.

It is also possible to set the provisioning to be boundless, as such a vault can
grow and grow as long as there is cluster capacity available.

Capacity is not reserved for the vault, thus, many vaults could be given a
“1000TB” provision, even if only “100TB” of storage space is available on the
cluster.

The system will allow writes until that capacity has been exceeded. i.e., if the
last object written is a very large object, it could be that the capacity is
significantly exceeded, but then the next object write will fail.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 18	
 of	
 40	
 	

	

4.5.2 Object Longevity Guarantees

When designing MatrixStore to hold archive data, it was seen as essential to
allow users to lock down data such that it cannot be deleted for a period of time
or even forever.

Locked data is effectively read-only for a fixed (or administrator adjustable)
amount of time.

This can be useful for a multitude of reasons:

• to protect against viruses/malicious users
• to protect against human error (oops! Just deleted the data in the wrong

vault type errors)
• to comply to a multitude of government and/or industry regulation

compliance requirements

When the user creates a vault the vault object is set to have a compliance
attribute. The compliance attribute can be set to be on or off. If on, the amount
of time that the data is stored for can be modifiable or extendable only.

When compliance is on, any object stored cannot be deleted for the period of
time indicated in the vault.

If the setting is extendable only then the length of time that was selected can
only be increased (not decreased). This means that the administrator cannot
quickly change the setting, delete a file and then change the setting back
again.

If the setting is modifiable, then an administrator can change the setting to then
delete a file.

Notes: Although the “modifiable” setting doesn’t guarantee data longevity
against user actions, it does however guarantee that any non-system
administrator will not delete data, and is therefore popular in smaller
companies.

Data will not automatically be deleted when the longevity date / compliance
threshold has expired

MatrixStore allows metadata pertaining to objects to be modified at any time.

MatrixStore implements the compliance setting at a vault level. When a user
wishes to perform an action such as a “delete” the settings of the vault are

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 19	
 of	
 40	
 	

	

checked, by the MatrixStore Services layer, before allowing the delete to occur.
This effectively stops users without physical access to hardware from being
able to delete objects that have been stored protected.

4.6 MatrixStore Regulation Compliance

Government regulations often include requirements/ guarantees to be made
about the way in which data is handled, accessed, security protected,
protected against loss, protected against accidental and/or purposeful deletion,
searched, stored, audited and authenticated.

MatrixStore helps to support, amongst others, the:

• Security and Exchange Commissions rule Rule 17a.4 that aims to prevent
overwriting, erasure or alteration of records

• HIPAA privacy ruling for Data Protection, requiring compliant backup
methodologies to ensure the security and confidentiality of patient records

• The Sarbanes-Oxley Act of 2002 protecting investors by improving the
accuracy and reliability of corporate disclosures. The Act amends mail and
wire fraud infractions with harsher punishments and imposes fines and
prison sentences of up to 20 years for anyone who knowingly alters or
destroys a record or document with the intent to obstruct an investigation.

The set-up of a vault should be governed by the classification or type of data to
be stored in that vault in accordance with any internal or legislative
requirements. Once set-up, data stored into that vault will be enforced to
comply with that set-up.

MatrixStore achieves compliance via functionality implemented in the server
layer and the client:

Data Immutability

• MatrixStore can lock down data and can be set to disallow any updating of
objects archived

Data Longevity/Non-repudiation

• Vaults can be set such that data cannot be deleted for a period of time. The
MatrixService layer enforces adherence to the policy. The period of time
cannot be changed if the vault is set to be unchangeable

• Different vaults can be set for different data types

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 20	
 of	
 40	
 	

	

Data Security1

• Communication with the MatrixStore can be up to 128-bit asymmetrically
encrypted

• A public key encryption mechanism is used such that data sniffing, data
modification, and replay attacks are protected against

• Vaults can be created so that the system administrator does not have
access to the data, only the vault users

Audits

• All actions on vaults/data may be audited
• Audits can be set to include/exclude read operations
• Audits are maintained, secured, and protected to the same levels that data

objects are

Search

• Data may be searched back using metadata labels.

Trusted 3rd Party Verification

• Data may be replicated offsite, where appropriate, to a trusted 3rd party

Data Protection and Authenticity

• Data and hardware is automatically monitored to be correct, thus ensuring
the long-term authenticity of data down to a bit level

• Replication of data to another site ensures protection against physical
hardware attacks

Delete

• MatrixStore does not currently shred (overwrite deleted data multiple times
with zeroes before deletion), but could easily changed to do so if that is a
requirement for someone

MatrixStore has a very strong set of functionality to help meet compliance
requirements.

4.7 Data Compression, Data de-duplication, Content
Addressed Storage (CAS)

Data Compression is only significantly relevant to companies that store
uncompressed data. Object Matrix takes the view that most of its customers
are storing video format files, and recompressing these files would be both time

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

1	
 Versions	
 of	
 MatrixStore	
 that	
 do	
 not	
 include	
 such	
 strong	
 encrypted	
 data	
 options	
 are	
 available	
 for	

territories	
 with	
 export	
 restrictions.	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 21	
 of	
 40	
 	

	

consuming and fruitless. Furthermore, compressed files cannot easily be
edited or partially restored. Client software can easily compress data before
storing; MatrixStore does not do this automatically.

Data de-duplication is not currently a feature of the cluster but is often carried
out by the storing client application (backup software, Final Cut Server etc).
De-duplication comes with a strong drawback – that it creates data
fragmentation. Object Matrix believes in storing data in an open, well-
established formats.

Content addressed storage (CAS), if required, is easily implemented in
MatrixStore, simply store the data’s digest with the data object as an attribute
and use that to search back the data when required. CAS has generally
become an out-dated concept.

MatrixStore is setup to keep data in an uncomplicated, secure, and long-term
fashion and has a healthy disrespect for risk.

4.8 MatrixStore Services

To allow nodes to act as a coherent group of loosely coupled, yet self-
supporting and scalable architecture, server software runs on each node
providing a set of services.

Internal services are covered in the Tasks section of this document. External
services include some tasks and:

External Service Notes

Node status Communicates node status to rest of
cluster

Multi-node transaction
service

Perform transactions to data (e.g., add
attribute), in a synchronized,
guaranteed manner across nodes

SNMP service Provide SNMP status

4.9 Search

MatrixStore is extremely efficient at searching for metadata since it takes
advantage of distributed search across the nodes and an optimised (for
metadata) database.

MatrixStore is designed to allow up to 20 million entries into a DB, per node,
per 1GB of memory. A maximum of 8GB of memory can be used per node. A
typical cluster can handle and respond to thousands of search requests per
second with zero to low impact on other concurrently occurring operations.

Thus, since the database is distributed, it scales in capacity as the cluster
scales upwards in nodes.

MatrixStore guarantees attributes about the database that are essential for
long-term cluster integrity and low-maintenance:

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 22	
 of	
 40	
 	

	

1. That the database can be rebuilt from the objects stored. That is to say
that the object’s metadata is stored within each object as well as within
the database.

2. That should a component part of the database become lost or corrupted,
that the database as a whole can continue to function.

3. That the database does not become slower, or require “tuning” as the
number of metadata items it holds grows.

Some organisations may require or intend to use high numbers of metadata
items. The metrics around the number of metadata entries vs node storage
capacity may have an affect on cluster configuration selections.

4.10 Object Encryption

MatrixStore does not automatically encrypt the data stored, but it can encrypt
data during transmission. If encryption is required, then it should be carried out
in the client software layer and should use a certificate authority whose lifespan
will outlive the archive!

4.11 Object Writ ing, Load Balancing

All data written to MatrixStore is written through the MatrixStore API. The API
ensures that the transmission is completed quickly, successful, and when
selected, securely.

The steps involved in sending data are:

1. Client initiates the construction of a secure connection to the cluster.
Connection can be to any node.

2. Request is sent to obtain a location to send the data to. Client is given a
location and a security certificate to send the data.

3. Client sends data to that location using a direct IP link to the node.
4. As the cluster receives data at one location it simultaneously relays the

data to a second storage location via the internal network.
5. When an end-of-object indicator is sent by the client to the cluster, client

also sends the checksum for the object. MatrixStore confirms that both
nodes have received the correct data with the same checksum, and then
syncs the data to disk2 together with any metadata and policy
information. An unique ID for the object just stored is returned to the
client.

6. The client can (if required) safely remove the original copy of data,
knowing that the data has been correctly received and flushed to disk at
two separate locations.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

2	
 	
 In	
 the	
 case	
 of	
 capacitor	
 and	
 flash	
 memory	
 backed	
 up	
 disk	
 cache,	
 this	
 may	
 mean	
 that	
 the	
 data	
 now	
 sits	

in	
 the	
 cache	
 rather	
 than	
 on	
 the	
 disk	
 itself	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 23	
 of	
 40	
 	

	

As can be seen by the steps above, secure, reliable transmission of data is
paramount; checksums, secure transmission and careful multiple location
sync’ing of data are not good for performance but are key to archiving.

Data transmission options are:

Type Notes

Secure Data is up to 256-bit encrypted when sent over the
connection. Note that MatrixStore builds are also
available for territories with export restrictions that
include lighter or no encryption options. The packets
are encrypted with their own keys, with the key being
changed during each handshake with the cluster. Data
transmission is therefore strongly protected against
sniffing and replay attacks.

Unsecured Only the connection to the cluster is secured.
Unsecured transmission is faster than secured
transmission, although the difference in speed depends
on the hardware used (30% is typical).

Asynchronous Either of the above options can be used in an
asynchronous mode. Using this option the client
continues to stream packets to the server without
waiting for ACKs, but rather, checking that the server
has received the correct data at checkpoints.

Load balancing is essentially carried out on a round-robin basis, though the
algorithm can also takes the following factors into account:

Factor Notes

Disk space
remaining

Nodes with the most disk space remaining are
preferred to those that are almost full.

Recent
activity

To a lesser extent, load is spread so that the
entire cluster is used (not just the most empty
nodes)

Data will always be stored in two separate nodes. Thus, should a node go
down, the data will be available for reading from the second location. The user
can however select that a vault keeps only a single instance of data. If that is
the case then once the data received has been verified (ie, read back from
disk) then one instance of the data will be removed.

Note that since data is kept in just two locations if massive multiple user read
access is required then a read cache should be used in front of the storage.
This is typical in VoD (Video on Demand) type services where an individual film
may be being watched by 1000’s of end users.

When data is sent through the API to be stored, it is sent together with
metadata and policy information. This information is stored together with the
data to form an object instance.

Data is stored in a non-proprietary format on the disks.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 24	
 of	
 40	
 	

	

4.12 Performance

Unlike filesystems which typically go through metadata controllers (which then
become the bottleneck), via TCP/IP connections, one client writing data to one
MatrixStore node will not affect the performance of another client writing data
to another MatrixStore node.

On 1Ge, MatrixStore performance is at full gigabit Ethernet speed, and
because individual clients connect to individual nodes to store data, as the
number of connections and clients grows the cluster can store data with near
linear speed improvements. 10Ge options are now also available.

For a single file transferring from a single client the following can bottle neck
performance:

• Since an IP based protocol is used ACKs can limit performance on high
latency networks. For internal networks this is not an issue.

• CPU speed at the server is critical when interpreting incoming packets and
flushing them through to the disk buffer. Sub dual core 1.6GHz processors
will struggle to handle 120MB/s.

• Disk RAID write speed can limit performance, particularly with 10Ge
• Network – a single 1Gb line will limit to max 100 to 110MB/s over IP

4.13 Object Reading

As with writing data to the MatrixStore, all read operations pass through the
MatrixStore API. The MatrixStore API enforces that the connection is made
with the correct security credentials and then that the transmission of data is
both checksummed and secure.

The following steps take place during reading data:

1. Client initiates the construction of a secure connection to the cluster
2. Request is sent to obtain the locations from which to read the object

from.
3. Client reads data from one of those locations using a direct IP link to the

node.

The cluster load balances reads using a simple random selector to select from
which node the client should read the data.

4.14 Object Identif ication

Every item of data stored is stored as an object. Every object is given an
unique ID by the MatrixStore. The ID is a 256 bit unique identifier (in an ASCII
printable format).

When an object is stored, and the ID returned, the client may select to store the
ID in a database to be able to retrieve the object at a later date. However, it is

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 25	
 of	
 40	
 	

	

not necessary to do so if enough metadata has been attached to the object to
allow it to be identified via that means. E.g., the storer may wish to attach its
own ID to the object and use that as the means to retrieve the object. Whilst
requiring an extra round trip between the client and the server to start reading
the object (the first round-trip being to perform a search, the second to retrieve
the object), the high speed of searching means that this is still an excellent way
to retrieve data.

4.15 Quality of Service

SNIA define QoS as “A technique for managing computer system resources
such as bandwidth” … “Policy rules are used to describe the operation of
network elements to make these guarantees.” … “RSVP allows for the
reservation of bandwidth in advance”.

MatrixStore does not provide QoS electing rather to serve data as quickly as
possible rather than to guarantee a steady stream of traffic.

MatrixStore should not be seen as a playout server, rather, it can provide the
playout server with all the data it requires. For example, a data centre topology
may have:

4.16 Security Overview

From the inside out MatrixStore was built with security in mind:

• security is included “out of the box” without requirement for specialist
training or knowledge;

• security is on the logins, data transfer, and on the node firewalls;
• security is simple: because the only access allowed is via the APIs any

security hole would have to exploit those APIs which is highly controllable

Security – Firewall

The ports required by the MatrixStore are 666, 667, 1907, 1908, and 8443.
They use protocols designed for MatrixStore only, and communications over
these ports are fully secured.

The Linux OS build has been stripped down to remove all applications from the
OS that could communicate over other ports. Since there is only a minimum of

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 26	
 of	
 40	
 	

	

background processes are running, the node is stable as a reliable long-term
storage device.

When installing MatrixStore, it is optional to leave an ssh port open on the
cluster. If left on, the system is only as secure as the password(s) on that port.
It is therefore recommended not to leave an ssh port open.

Note that if the company installing the MatrixStore has a firewall installed in the
data centre, then it must be adjusted to allow for traffic on the ports used within
MatrixStore.

Security – Data Communications3

Every client that talks to the server is uses MatrixStore’s API in that connection
(important: see footnote). The connection sets up a PPK type connection, the
sequence of events being:

1. Request and agree up to a 256-bit secure channel to communicate over
with the server

2. Pass a 256bit password over this channel for access to the vault
3. Transmit any data. Data is up to 256-bit encrypted.
4. On the handshake of each packet, agree the encryption code for the

next packet.
5. On receipt of a packet, de-encrypt (against previous handshake)
6. (until end of communication)

Thus,

1. All communication is encrypted and authenticated
2. Replay attacks will not work (due to evolving keys)
3. Packet decryption over long time packet sniffing is difficult due to the

usage of evolving keys
4. Data can be safely sent over the Internet, and indeed the whole cluster

can safely be placed on the internet

To encrypt data the Helix algorithmi is used. The security solution has been
built to allow other algorithm’s to be plugged in as required.

Whilst it is desirable to encrypt the traffic of data to and from the server, the act
of doing so generates CPU overhead at both client and server sides. In
situations where data does not need to encrypted, encryption may be switched
off.

Security – User Types

Data is stored and accessed within logical constructs called “Vaults”. A client
with access rights to a Vault has access to that and only that Vault (i.e., unlike
groups in UNIX type systems). Thus, a client will need to maintain separate

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

3	
 MatrixStore	
 version	
 for	
 export	
 to	
 restricted	
 territories	
 does	
 not	
 include	
 these	
 options	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 27	
 of	
 40	
 	

	

access credentials if he/she wishes to access different Vaults on a MatrixStore
archive.

Vaults can be organised as required, e.g., one vault could be for pre-production
data, another for post-production data, another for customer-x, and yet another
for the accounts department.

Access credentials for a Vault can provide read, write, delete and/or search
capabilities for that vault. Thus, a customer could be given read only
credentials for a vault relating to the customer.

There are several System level user types that have no access to data in
Vaults but are allowed to perform different functionality via the MatrixStore
Management API:

User Type Notes

root Generally this user is not used.

Can create/change the sysadmin. Root password is
created at cluster creation time.

sysadmin Commonly used cluster password via the Administrator
console. Can create vaults, reset vault passwords,
change SNMP settings, etc. A sysadmin account is
created when the cluster is created.

service Designed for a service engineer.

Provides the service engineer with access to only
functionality that will aid the engineer, to avoid
giving access to sensitive data.

Per vault users are:

Vault
User

Notes

Admin A vault admin may create users on the vault

user… Vault users can be given read / write / delete /
search rights.

Security – Viruses and Human Error

Most disk based archive or mass storage solutions are extremely vulnerable to
viruses and/or human error. A virus with access to a volume could quite easily
delete the content of an entire archive. Likewise, a human error, e.g., typing
“rm –r *” at the wrong location, could easily lead to data loss. MatixStore is built
to avoid such losses.

All communications to the cluster go via secure protocols. A virus would need
to have intimate knowledge of the protocol and even then would need to have
the right security credentials.

Furthermore, all data can be stored as immutable for a determined amount of
time thus stopping data from being accidentally and/or deliberately deleted.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 28	
 of	
 40	
 	

	

Security - Adding Nodes

To avoid rogue nodes trying to attach themselves to the cluster as a malicious
entity or simply before the administrator is ready to start using the node, new
node attachment to an existing cluster is a two stage process:

1. Install MatrixStore software on the new node, and physically attach the
new node to the other nodes in the cluster.

2. Use the Maintenance tool from a client machine to add the node to the
cluster. This requires a system administration password.

4.17 Maintenance – Storage Space Configuration

Neither a node nor the cluster should ever be allowed to run out of storage
space.

At a cluster level, ideally, there should always maintain enough space into
which to recover data should there be a single node failure. If there is less
space remaining that this, the cluster has an “amber” status.

A cluster will always be considered full if there aren’t at least two nodes left with
disk space available. At that stage the cluster will no longer accept data writes.

At a node level, the server will fill a node to 97% capacity. This allows space for
log files, auditing, attribute changes and database space. A node that is full will
no longer be selected for writes.

A rough formula for calculating whether the cluster goes to amber status (in a
cluster with equally loaded, equally sized nodes) is:

If (space_remaining - space_remaining_on_one_ node) < (total_space * 97%)
/ num_nodes -> “amber”

Or, where disks are empty:

% space available = n-1/n

where n = number of nodes.

Or, if there are 4 nodes, keep 25% free. If there are 10 nodes, keep 10% free,
etc.

MatrixStore server software contains a registration key license that also limits
the amount of space available for use. This allows Object Matrix to freely
distribute the software for trials.

Concerning adding storage capacity, the system is only tested for adding extra
nodes – Object Matrix does not currently support changing the capacity
available on a single node.

4.18 Server Tasks

On each node a number of background tasks run to check and maintain the
integrity of the data on the cluster. These tasks include:

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 29	
 of	
 40	
 	

	

• Self-healing
• Data replication
• Data verification
• Regulation compliance

Tasks run in the server layer and can be controlled, to some degree, via the
administration screens. E.g., some tasks may be paused, or forced to run
immediately.

Data Integrity and the Verify Object Task

When an object is stored to the cluster it is mirrored to two nodes. Transfer
checksums verify that the correct data was received at each location and disk
flushing is completed before the object ID is returned to client application,
however there is a chance that there are underlying disk block corruptions (it is
a known that RAID cards are not always able to detect nor recover from such
situations, Robin Harris on StorageMojo has several interesting articles on this
subject from in-the-field surveys). Therefore, when an object is stored it is listed
to be verified.

The verify object task will, approx. 24 hours after the object has been written,
verify the object to see that the checksum matches the contents. Should a
corruption be noticed, then the object will be moved to a corrupt objects folder,
and a replacement will be retrieved from the other mirror copy of the data. If
both versions are corrupt (which would seem extremely unlikely) then both
copies are left untouched.

An interesting question is how often should objects be rechecked for correct
integrity? Too often and the risk is that hardware failure may be invoked by
constantly running disks, too long and corruptions may go unnoticed before
both copies have become corrupt (or the good node has been replaced).

Standard setting is to recheck the objects are correct once per annum.

Self Healing Tasks (Data Regeneration)

If a node containing a duplicate of the data is un-contactable for a set period of
time then self-healing / automated data regeneration will be invoked. The
period of time here is a critical factor: the longer the period of time, the more
the cluster is in risk of a second failure that causes data the to potentially be
permanently lost, the shorter the period the more likely undesirable
regeneration will start to occur, e.g., if a node was accidentally powered down
for a period of time. Typically the timeout period is set to 72 hours on a raided
disk solution.

Thus, should a node be offline for more than 72 hours, the other nodes in the
cluster will begin to regenerate any data that they share with that node. All
nodes do this in unison, thus in a ten node cluster, on average the other 9
nodes will hold 1/9th of the data held on the down node. If the node is fairly
large and filled to 80% full – e.g., 40TB in size, then each other node will need
to regenerate 40TB * 80% * 1/9th = approx. 3TB. If data is regenerated to a new

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 30	
 of	
 40	
 	

	

location at 80MB/s then the regeneration period will be approx. 10 hours. This
is astonishingly quick compared to just about every other clustered storage
solution out there.

It is possible to stop automated data regeneration (e.g., if you know a node is
going to be offline for a period of time). To do this, simply go to the task pane
on the Administration tool, select and pause the Regeneration tasks.

4.19 Node Re-attachment (Version 2.4 onwards)

If a node that was regenerated is reattached to the cluster then the data that
was regenerated elsewhere in the cluster, and that is on that reattached node,
is moved to a “to-delete area”. The administrator can empty that to-delete area
via the administration console tasks screen.

4.20 Node Decommissioning (Version 2.4 onwards)

A node may be decommissioned because it is seen as going faulty or because
it is simply being phased out. Whilst the node could simple be switched off and
unplugged, it is less susceptible to risk to decommission the node from the
administration console. (e.g., if the node is simply unplugged, then data could
be lost if another node were to subsequently fail before regeneration took
place). Also, if “Single Instance Vaults” (see below) are being used then it is
very important indeed to decommission a node rather than just switching it off.

4.21 Single Instance Vaults (Version 2.4 onwards)

When a file is copied from the client on to the cluster two copies of that file are
made at two separate locations, metadata and policy information are added,
resulting in two object instances.

From MatrixStore v2.4 onwards the administrator can elect to make a vault a
single instance vault, in which case the following will occur:

• If the vault is a replicated vault, both instances will be stored and verified.
The object will then be replicated to the remote cluster, where another two
instances of the object will be stored. At that point the source cluster knows
that one instance of the object can be replaced by a stub. Should the good
instance of the data be lost, then the stub will attempt to fetch the object
from the remote cluster to recover the data.

• If the vault is not replicated then once the object has been verified as not
corrupt, one instance will be replaced by a stub. Should the good node
instance be lost then the data will be permanently lost.

This powerful store and forward functionality of MatrixStore allows up to 50%
data space to be saved at any one cluster location. A vault may manually be
changed from being a dual instance vault to a single instance vault at any time.

Note that the level of data protection with a single instance vault is strongly
compromised. Should a node in the cluster become unavailable (e.g., via a

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 31	
 of	
 40	
 	

	

local filesystem corruption), then data will become irrecoverable. Therefore
data should only ever be kept “Single Instance” if there is another copy of the
data available elsewhere, or if the data can afford to be lost.

4.22 Removing MatrixStore Software

An archive solution should store data in an open, and well-tested format; not in
a format that is subject to frequent change (as tape formats are) and not one
that depends on the support of an individual company.

Since MatrixStore stores data in an open format it is possible to remove the
software, reboot the node and then to access the data directly.

To do this:

Switch off all the nodes

One by one, load the desired operating system onto the nodes (e.g., reload
Linux/MacOSX from DVD)

Mount the existing filesystems.

Create a script/application to walk the file system and to collect the metadata
for the files into a db, spreadsheet, or other format of your choice. Example
applications for this are included with MatrixStore / available from Object
Matrix, these are documented and are included in the MatrixStore delivery.

Unlike many archive solutions, MatrixStore’s philosophy is that the data is
yours, and that you should not be irrevocably tied in to the solution.

4.23 Data Mirroring

Mirroring on a standard device usually involves making two copies of every
piece of data stored, one on each volume (or side) of the Raid unit.

This method has several physical advantages for high speed throughput, but
also has several disadvantages, including but not limited to:

• The volumes typically have to be of the same size
• If the device is going to be rolled out, then all of the data needs to be moved

off of it first, and then all of the indexes pointing to the data need to be
changed to point to the new location of the data

• If the device has a problem and needs to be replaced, then data may be
lost

MatrixStore mirroring is based upon object mirroring across independent
nodes. When an object is stored in one location, it is simultaneously stored on
at a second location.

Since mirroring is carried out at an object level nodes/storage volumes can be
of any size.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 32	
 of	
 40	
 	

	

Mirroring across nodes is not optimal in performance compared to using
dedicated fast IO throughput hardware, but it is reliable and flexible.

4.24 Regulation Compliance

MatrixStore supports a large number of compliance requirements by ensuring
that all data stored is secured from public access, protected against loss,
audited, authenticated, available at all times and protected from unauthorised
deletion.

MatrixStore helps to support, amongst others:

• Security and Exchange Commissions rule Rule 17a.4 that aims to prevent
overwriting, erasure or alteration of records.

• HIPAA privacy ruling for Data Protection, requiring compliant backup
methodologies to ensure the security and confidentiality of patient records.

The Sarbanes-Oxley Act of 2002 protecting investors by improving the
accuracy and reliability of corporate disclosures. The Act amends mail and wire
fraud infractions with harsher punishments and imposes fines and prison
sentences of up to 20 years for anyone who knowingly alters or destroys a
record or document with the intent to obstruct an investigation.

Individual vaults of data can support different regulations

Some of the ways that MatrixStore helps to support regulations are:

Regulation Compliance
Requirement

MatrixStore Solution

Guaranteed retention of data
for specific amount of time

Policy stored with data enforces
that the data cannot be deleted
before its time.

Audit logs and log files

Configurable audit log can track
writes, reads, deletes. Log
files track other system
modifications.

WORM Data is stored fixed cannot be
modified.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 33	
 of	
 40	
 	

	

Authentication

A 256bit digest calculated when
the data is stored acts as a
guarantee that the data is
bitwise exactly the same when it
is read back as when it was
originally stored.

Security and Privacy

Full network security is
employed to stop replay,
sniffing, data modification and
other attacks. User access
rights can be set to only give
access to certain groups of
data.

Accessibility
Time to first byte is sub-
second, even under heavy load.

Searchability

Built-in database can support
many searches per second across
100’s of millions of database
entries.

Disaster recovery

Covered on two levels: by
replication to a separate
cluster and data is stored on a
single cluster such that 4 disks
would need to irrevocably fail
before data is at risk.

4.25 Data Replication

It is sometimes desirable for purposes of data protection / disaster recovery
(DR) / business continuance to ensure that data is stored in more than one
geographic location.

Good replication solutions should provide the following attributes:
• Simple to set-up and use = less human or technical errors
• Not tied to the underlying hardware = flexibility and serviceable in the

future
• Neither O/S specific nor data type specific
• Works over standard transport protocols or VPNs
• Secure data transmission options
• Scalable performance
• Easy to select data that needs replicating and data that doesn’t
• Ability to replicate deletes or not to
• Facilitate high availability, e.g., by allowing Reads from either the source

or target of the replication
• Facilitate fast disaster recovery in the case that one site is lost, that work

can immediately continue at the replicated site

MatrixStore supports and/or facilitates each of the above attributes. Its
replication works on an asynchronous model of transmission to the second

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 34	
 of	
 40	
 	

	

store. The replication is carried out over a secure (encrypted) TCP/IP
connection. Therefore, replication communication can be carried via a public
internet provider or via a VPN / private dedicated connection.

Individual vaults within MatrixStore can be selected to be (or not to be)
replicated. Thus, not all the data on a MatrixStore cluster needs to be
replicated and two clusters do not need to be the same size as one another.

In this first example we show a set up where one vault is being replicated to
another MatrixStore, which in turn is replicating another vault back to the first
MatrixStore.

A cluster topology might simply contain two clusters, but also, a cluster may
receive data from several other clusters so that, e.g., a central data repository
could be created that receives data from many branch offices. E.g.,:

The central repository vault can be attached to for reads.

Of course, replication could also be set to replicate to individual vaults at the
central repository if separation of the data is required.

Other features are:

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 35	
 of	
 40	
 	

	

• Optionally deletes can be forwarded or not. Thus the Vault at the central
repository can become a media library, whilst the original (e.g., branch)
location can be kept small.

• A vault can be relayed onwards, such that the data added to a vault can be

kept on all MatrixStores.

• If the vault is single instance, two instances will be kept at the source cluster

until one instance is effectively forwarded to the second cluster. Thus at no
time will the user have a single instance of data. See also Single Instance
Vaults, which ensure that only one copy of data per location is kept.

MatrixStore Replication Restrictions

• Two way replication is not supported
• For disaster recovery situations the users of Cluster 1 need to also be kept

in Cluster 2

4.26 Management API

The Management API:

• Enables commands that can update / effect the whole cluster
• Ensures that commands reach all the nodes, and that settings are received

by nodes that were temporarily offline when the command was issued

The management API is pure Java, and connects to one node in order to
initiate instructions that will subsequently be rolled out to the rest of the nodes
in the cluster. Commands include adding vaults, changing users, getting audit
logs, changing task settings, etc. When a communication is set-up between a
client and the server for a management function:

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 36	
 of	
 40	
 	

	

1. Client requests and agrees with the server up to a 256-bit secure
channel (see footnote 4)

2. User credentials and 256bit password are transmitted
3. Data pertaining to the operation is transmitted. Data is 256-bit

encrypted. (see footnote)
4. Receiving node relays the operation to other nodes in the cluster.

When a node is attached to the cluster it will automatically take the clusters
settings from the nodes that are already present.

4.27 MatrixStore API

All communication with MatrixStore goes from the client to the server using
MatrixStore’s API. This enables us to maintain security, failover, cluster
discovery, retries, transport protocol selection, and metadata control.

The MatrixStore API is available in C and Java (the Java implementation being
a wrapper for the C implementation). The API is tested upon:

• Windows 2000/XP onwards
• Linux, any distribution with GCC v3.4 or greater and glibc v2.3.3 or greater

(e.g., Red Hat 8/9, Suse 8, Fedora, Gentoo) onwards
• MacOSX 10.4.x onwards

The MatrixStore API is not tested upon (but can be tested on demand to work
with):

• Unix, any distribution with ‘upperbit’ version (e.g., Sun Solaris 9, IBM AIX,
HP Unix)

Full documentation for programming the API is available upon request from
Object Matrix.

4.28 Upgrading Software

Software is upgraded from the MatrixStore Maintenance tool. The tool will
inject the software into all the online nodes of the cluster and will restart them
to complete the upgrade.

4.29 Cluster Monitoring and SNMP

There are two ways to monitor the health status of the cluster:

• SNMP traps

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

4	
 Note	
 that	
 MatrixStore	
 builds	
 for	
 countries	
 with	
 export	
 restrictions	
 are	
 available	
 that	
 don’t	
 include	

these	
 encryption	
 options	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 37	
 of	
 40	
 	

	

• Via the MatrixStore Administration Application

A client must register the SNMP monitor via the MatrixStore Administration
application in order to receive traps.

The MatrixStore Administration application registers the monitor and / or
receives and shows health information itself via the Management API.

4.30 Updateable Objects (Version 2.4 onwards)

A Vault can be created or changed to be “updateable”. Unlike other objects in
the cluster, objects in an updateable vault can be modified at any time.

This is critical for any application using random access (e.g., a filesystem
interface) to write data to the MatrixStore.

Primarily, updateable vaults enable filesystem front ends to be easily
implemented.

If a vault is set to be both compliant and updateable, then updates are allowed
only for a short amount of time (first 10 minutes).

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 38	
 of	
 40	
 	

	

5 10GigE or not 10GigE?
Copied from an Object Matrix Blog article:

A common MatrixStore question is – can we do 10GigE? The answer is both
“yes” and “why do you need that?” To understand that response it is good to
compare traditional to the MatrixStore way of doing things.

5.1 Tradit ional Data Flow between Clients and Servers

Traditional connections to a server are of course limited to the bandwidth
provided by the “entry point” to the server. 100Mbit/s, 1GigE, 10GigE…

A typical traditional architecture:

Solutions being released this year are still based on that architecture.

The first problem with the traditional architecture is that the solution is limited to
the speed of the cable in the solution. The better types of solutions in this class
maybe have two or more bonded connections, but ultimately you are talking
about only a few clients being able to get full speed access: double the number
of clients and you’ll lose half the access speed per client.

Pumping all your data through a single pipeline is akin to everyone flying to
New York and then transferring rather than flying direct to your final
destination.

The second bottleneck in a traditional server is also a major issue: how fast can
that server process the packets that it receives? If the server is, e.g., utilising
software RAID, then the ability of the server to be able to software RAID more
than a hundred MB/s is often limited by CPU power. Without the server having
some very powerful hardware inside, a single server is not going to be able to
get anywhere near 10GbitE/s, however many 10GbitE/s ports it has.

The third problem is that most post-houses and broadcasters simply aren’t set
up with 10Ge infrastructure. There might be a few servers with 10Ge but few
have anything other than 1Ge clients.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 39	
 of	
 40	
 	

	

Add to that the obvious problems of having a single point of failure, and the
difficulty in being able to expand the location, and you begin to ask if there isn’t
a better way!

5.2 MatrixStore RAIN (Redundant Array of Independent
Nodes) Architecture

With MatrixStore, the server is a RAIN cluster. Typically we sell each
MatrixStore node with two 1GbitE connections. But that is limiting – the beauty
of the solution is that the clients using the solution are not limited to 1GbitE or
2GbitE at all. Whilst one client is writing to one node another client can be
writing to a second node: the result is a combined aggregate bandwidth:

Secondly, because the work in the cluster is distributed: there are many CPUs
to handle the connections being made including the RAID’ing of the data.

Third, all the clients can be on 1GbitE, but the total bandwidth can be as large
as the cluster is.

Even if the data is all coming from the same client could be writing many files at
the same time to multiple different locations using different IP connections for
all the files being sent.

So, in short, if you need more aggregate bandwidth, simply add more nodes!:

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

©Object	
 Matrix	
 Ltd	
 2014.	
 All	
 Rights	
 Reserved.	
 	
 	
 	
 Page	
 40	
 of	
 40	
 	

	

Lastly, if individual files need to be sent with larger bandwidths and if your
clients support them, then there is always the option to put individual 10GbitE
connections on the nodes in the cluster.

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	

